Study of Magnetic Helicity in Solar Active Regions and Its Relationship with Solar Eruptions

نویسنده

  • Sung-Hong Park
چکیده

STUDY OF MAGNETIC HELICITY IN SOLAR ACTIVE REGIONS AND ITS RELATIONSHIP WITH SOLAR ERUPTIONS by Sung-Hong Park It is generally believed that eruptive phenomena in the solar atmosphere such as solar flares and coronal mass ejections (CMEs) occur in solar active regions with complex magnetic structures. The magnetic complexity is quantified in terms of twists, kinks, and interlinkages of magnetic field lines. Magnetic helicity has been recognized as a useful measure for these properties of a given magnetic field system. Magnetic helicity studies have been naturally directed to the energy buildup and instability leading to solar eruptions. However, in spite of many years of study, detailed aspects of initiation mechanisms of eruptive events are still not well understood. The objective of this dissertation is to understand a long-term (a few days) variation of magnetic helicity in active regions and its relationship with flares and CMEs. The research presented in this dissertation benefited significantly from the comprehensive data now available, including SOHO/MDI full-disk longitudinal magnetograms, Hinode/SOT/SP vector magnetograms, and GOES soft X-ray data. In addition, several advanced data analysis tools were utilized such as local correlation tracking, differential affine velocity estimator, Stokes inversion, 180◦ ambiguity resolution, and nonlinear force-free magnetic field extrapolation. Statistical studies of flare productivity and magnetic helicity injection in ∼400 active regions were carried out. The time profile of the coronal magnetic helicity in the active region NOAA 10930 was also investigated to find its characteristic variation related to the X3.4 flare on 2006 December 13. In addition, the temporal variation of magnetic helicity injected through the photosphere of active regions was examined related to 46 CMEs and two active-region coronal arcades building up to CMEs. The main findings in this dissertation are as follows: (1) the study of magnetic helicity for active regions producing major flares and CMEs indicates that there is always a significant helicity injection of 1042–1043 Mx2 through the active-region photosphere over a long period of ∼0.5–a few days before the flares and CMEs; (2) the study of the 2006 December 13 X3.4 flare shows that the flare is preceded by not only a large increase of negative helicity in the corona over ∼1.5 days but also a noticeable injection of oppositelysigned helicity though the photospheric surface around the flaring magnetic polarity inversion line; (3) the gradual inflation stage of the two arcades is temporally associated with helicity injection from the active-region photosphere; and (4) for the 30 CMEs under investigation, it is found that there is a fairly good correlation (linear correlation coefficient of 0.71) between the average helicity injection in the CME-productive active regions and the CME speed. Beside the scientific contribution, a major broader impact of this dissertation is the observational discovery of a characteristic variation of the pattern of magnetic helicity injection in flare/CME-productive active regions, which can be used for the improvement of solar eruption forecasting. An early warning sign of flare-CME occurrence could be implemented based on tracking of a period of monotonically increasing helicity because there was always a significant amount of helicity accumulation in active regions a few days before the major flares and CMEs under investigation. STUDY OF MAGNETIC HELICITY IN SOLAR ACTIVE REGIONS AND ITS RELATIONSHIP WITH SOLAR ERUPTIONS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of Magnetic Helicity and Energy Spectra of Solar Active Regions

We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field for estimating magnetic energy and helicity spectra as well as current helicity spectra of individual active regions and the change of their spectral indices with the solar cycle. The departure of the spectral index of current helicity from 5/3 is analyzed, and it is found that it ...

متن کامل

Helicity of Solar Active Regions from a Dynamo Model

We calculate helicities of solar active regions based on the idea that poloidal flux lines get wrapped around a toroidal flux tube rising through the convection zone, thereby giving rise to the helicity. Rough estimates based on this idea compare favorably with the observed magnitude of helicity. We use our solar dynamo model based on the Babcock-Leighton a-effect to study how helicity varies w...

متن کامل

Magnetic Energy and Helicity Budgets in the Active-Region Solar Corona. I. Linear Force-Free Approximation

We self-consistently derive the magnetic energy and relative magnetic helicity budgets of a three-dimensional linear force-free magnetic structure rooted in a lower boundary plane. For the potential magnetic energy we derive a general expression that gives results practically equivalent to those of the magnetic Virial theorem. All magnetic energy and helicity budgets are formulated in terms of ...

متن کامل

Magnetic reconnection in solar eruptive events of varying magnetic configurations

We study the relationship between magnetic reconnection and acceleration of filaments and coronal mass ejections (CMEs) in different magnetic configurations. They occur in either quiet-Sun or active regions of either bipolar or multipolar magnetic fields, and are either or not accompanied by filament eruptions. The preliminary results of the case studies confirm the temporal correlation and mag...

متن کامل

Magnetic Helicity Generation by Solar Differential Rotation

Observations of sunspots, active regions, filaments, coronal arcades, and interplanetary magnetic clouds indicate that the Sun preferentially exhibits left-handed, negative-helicity features in its northern hemisphere, and their opposite counterparts in the south, independent of sunspot cycle. We investigate quantitatively the generation of magnetic helicity by solar differential rotation actin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010